- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chapman, Barbara (2)
-
Emani, Murali (2)
-
Raskar, Siddhisanket (2)
-
Verma, Gaurav (2)
-
Malik, Abid M (1)
-
Xie, Zhen (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tuning tensor program generation involves navigating a vast search space to find optimal program transformations and measurements for a program on the target hardware. The complexity of this process is further amplified by the exponential combinations of transformations, especially in heterogeneous environments. This research addresses these challenges by introducing a novel approach that learns the joint neural network and hardware features space, facilitating knowledge transfer to new, unseen target hardware. A comprehensive analysis is conducted on the existing state-of-the-art dataset, TenSet, including a thorough examination of test split strategies and the proposal of methodologies for dataset pruning. Leveraging an attention-inspired technique, we tailor the tuning of tensor programs to embed both neural network and hardware-specific features. Notably, our approach substantially reduces the dataset size by up to 53% compared to the baseline without compromising Pairwise Comparison Accuracy (PCA). Furthermore, our proposed methodology demonstrates competitive or improved mean inference times with only 25–40% of the baseline tuning time across various networks and target hardware. The attention-based tuner can effectively utilize schedules learned from previous hardware program measurements to optimize tensor program tuning on previously unseen hardware, achieving a top-5 accuracy exceeding 90%. This research introduces a significant advancement in autotuning tensor program generation, addressing the complexities associated with heterogeneous environments and showcasing promising results regarding efficiency and accuracy.more » « less
-
Verma, Gaurav; Raskar, Siddhisanket; Xie, Zhen; Malik, Abid M; Emani, Murali; Chapman, Barbara (, ACM)
An official website of the United States government
